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ABSTRACT 

In this paper, we survey the energy-efficient resource share 

problem in a single-cell OFDMA system to achieve the 

energy competence tradeoff among users. Our main objective 

of the proposed system is to increase the energy efficiency 

each and every individual user. The spectral-energy 

competence trade-off is of primary consequence to determine 

how much energy per bit is required in a wireless 

communication system to attain exact spectral effectiveness. 

To discover its solution, we first change it into two different 

single-objective optimization troubles using proposed 

approaches such as weighted-sum and the maximum-

minimum approach. The single-objective optimization 

troubles are non-convex due to the combinatorial channel 

allotment variables. Consequently, for both problems, we first 

give an upper bound algorithm through soothing the 

combinatorial variables and then expand a proposed method 

of suboptimal heuristic algorithm. The sum-of-ratios 

optimization method and comprehensive fractional 

programming are utilized for the weighted sum problem and 

the maximum-minimum problem, respectively. The 

Mathematical results demonstrate that the both weighted-sum 

and the maximum-minimum approaches can effectively 

resolve the EE maximization problem. Hence the proposed 

suboptimal heuristic algorithms can achieve a close 

performance to the matching upper bound algorithm. 

Simulation result shows that the impact of user’s excellence 

of service is small on the energy efficiency when a enormous 

spectral efficiency is required. 

Keywords 
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1. INTRODUCTION 
Due to the rapid development of DSP and VLSI, wireless 

communication systems have been explosive enlargement in 

the past decades. Next invention wireless networks as 

expected to carry huge number of subscribers, while at the 

equal time deal with the different service necessities of each 

user. Thus OFDMA forms the radio resource share scheme for 

the previous method and envisioned networks to hold the 

growing number of users with the restricted spectrum level. 

OFDMA allows numerous users to transmit concurrently at 

minor data rates. The obtainable spectrum band is separated 

into a number of sub-channels and each user is provided with 

a put out of joint set of subcarriers. After the subcarrier share 

is determined, the bit and power allocation algorithm can be 

functional to each user on its owed subcarriers. The user can 

send out his data in the owed subcarriers. A most important 

challenge in OFDMA is for a given number of users and 

subcarriers, how to assign a disjoint set of subcarriers amongst 

the users. The traditional approaches for the crisis are difficult 

and NP hard. The energy-saving of mobile devices is 

becoming gradually more important due to the quick-

tempered growth of wireless mobile applications. Since a 

huge amount of energy is extremes by data transmission, 

energy-efficient wireless communications enclose aroused 

much research interest in recent years. On the other hand, 

OFDMA have been broadly applied in wireless 

communication systems owing to its high efficiency and 

strength against broadband channel desertion. Hence, lots of 

work has been completed to get better the energy efficiency of 

users in the OFDMA system. For the single user case, the EE 

maximization for OFDM systems has been investigate in 

previous works, bearing in mind of both circuit and spread 

power consumption. These works have been wide into 

OFDMA systems, where energy-efficient resource sharing 

methods have been developed for both down-link and up-link. 

In the finest EE has been investigated for a flat-fading 

communication link by means of rate-dependent circuit power 

model. The energy- and spectral- efficiency tradeoff has been 

investigated for the up-link matched multipoint systems and 

dispersed antenna systems. The EE maximization for up-link 

users has been investigate in single-cell OFDMA, multi-cell 

OFDMA, multi-user multiple-input multiple-output, and 

carrier aggregation systems. Normally, maximize on the 

whole EE can be formulate as a single-objective optimization 

difficulty. Though, if allowing for entity EE, the EE of each 

user should be optimized concurrently, and then a multi-

objective optimization difficulty is formulate in this paper. In 

wide-ranging, multi-objective optimization is hard to resolve 

because it has a lot of Pareto optimal solutions. A multi-

objective optimization difficulty can be efficiently resolved by 

converting into a solo objective optimization problem. In this 

paper, we will adopt two different approaches to resolve the 

difficulty. The first one is the weighted-sum approach, which 

maximizes the weighted summary of the EEs of each user, 

and the second one is the max-min approach, which 

maximizes the smallest amount EE among users. Both 

approaches can attain the Pareto optimal solution of the multi-

objective difficulty. As the channel sharing indicators are 

binary variables, the problem becomes a combinatorial 

optimization and is tough to resolve. We first slow down the 

channel allotment indicators into continuous variables to 

expand the upper-bound algorithms. The main dare of EE 

optimization is the partial structure in the EE expression. To 

deal with it, we relate the sum-of-ratios optimization to 

resolve the weighted-sum difficulty and the widespread 

fractional programming to resolve the maximum minimum 

problem. Based on this, two iterative algorithms are proposed 

which can attain the optimal solutions to the two problems, 

respectively. We shall note that the sum-of-ratios optimization 

and the GFP have been utilized to solve the EE problem in 

carrier aggregation systems and various networks, 

respectively. We also expand a suboptimal heuristic algorithm 

for each optimization problem, taking into explanation the 

combinatorial channel share variables. A mathematical result 

shows that both approaches can efficiently resolve the EE 

maximization problem and achieve a fair EE tradeoff as well. 
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Moreover, the suboptimal heuristic algorithms can get a close 

concert to the corresponding upper bound algorithm. In finale, 

the novel and contribution of the proposed paper are listed as 

follows.  Instead of the whole EE, our aim is maximizing 

the EE for each individual user, which has the advantage of 

given that enhanced understanding on EE tradeoff.  To 

locate the upper bound algorithm of multi-objective resource 

allocation problem, we first change it into single objective 

problems using the weighted-sum approach and the max-min 

approach, and then novelly exploit the sum of- ratios 

optimization method and the GFP method to resolve them, 

respectively. Two suboptimal heuristic algorithms with 

suitable performance are also developed. 

2. RELATED WORK 
In the Previous method, a large of Resource allocation 

problems have been planned and solved for single-cell 

OFDMA systems. In common, those troubles can be classified 

into two categories. The first one is margin-adaptive which 

minimizes the total power consumption subject to agreed rate 

requirements for users. The second one is rate-adaptive which 

increases the sum rate subject to a total power limit. In 

addition, the application-dependent user rate constraints are 

prearranged. When there are such constraints, proportional 

rate can be forced to assurance proportional sprite surrounded 

by the users. To achieve the maximum equality among users, 

a maximum-minimum difficulty can be resolved to provide 

parallel rates to users. In recent times, some margin-adaptive 

joint resource share algorithms have proposed for the 

downlink of cellular OFDMA systems. In the joint resource 

allocation is optimized for each subcarrier separately, the rate-

adaptive algorithms can be adopted. However, a joint resource 

share over all subcarriers is favored in order to better make 

use of the frequency and multiuser diversity intrinsic in 

OFDMA systems. To this end, two rate-adaptive joint 

resource share algorithms have been proposed. Both 

algorithms optimize subcarrier and power allocation 

iteratively, such that the weighted sum-rate keeps increasing 

until convergence. Specifically, both algorithms accept 

duality-based methods, which were first developed for 

multiuser power manages in crosstalk-corrupted digital 

subscriber line systems to optimize the power allocation. In 

particular, the weight of each user represents the priority of 

this user’s rate. However, it is not clear how to decide the 

weights so as to fulfill agreed equality criterion among users. 

3. OFDMA SYSTEM MODEL 

3.1 Notation 
Complex Gaussian random variable with mean μ and variance 

σ2 is denoted by CN (μ, σ2), and ∼ means “distributed as”. 

[x] + = max {0, x}. [X]ab = a, if x > a, [x]ab = x, if b ≤ x ≤ a, 

[x]ab = b, if b > x. ∑x{•} denotes statistical expectation with 

respect to random variable x. 

3.2 OFDMA Channel Model 
We consider an OFDMA network which consists of a BS and 

K mobile users. All transceivers are equipped with a single 

antenna. The total bandwidth of the system is B Hertz and 

there are nf subcarriers. The transmission time is T seconds. 

We assume that the BS adapts the resource allocation policy 

(i.e., the power allocation and subcarrier allocation policies) L 

times for a given period T. The optimal value of L and the 

time instant of each adaption will be provided in the next 

section. The downlink symbol received at user k ∈  {1. . . K} 

from the BS on subcarrier i ∈  {1 . . . nf} at time instant1 t, 0 ≤ 

t ≤ T, is given by 

 

Where xi,k and  are the 

transmitted data sign and the precoding vector used by the 

base station to send out the user k on subcarrier i, 

correspondingly. NTi,k is the number of active antennas 

allocated to user k on subcarrier i for transmission. Pi,k is the 

transmit power for the link from the BS to user k in subcarrier 

i. is the subcarrier allocation 

indicator in subcarrier i for user j. 

contains the small scale fading coefficients between the base 

station and user k on subcarrier i.  

lk- path loss and gk- Shadowing between the BS and user k. 

 Zi,k - Additive white Gaussian noise  in subcarrier i at user k 

with distribution , where N0 is the noise 

power spectral density. 

3.3 Channel State Information 
The lk and gk are slowly varying random processes which 

both vary at the request of seconds for low mobility users; we 

presume that the lk and shadowing coefficients can be 

predictable absolutely. For the multipath fading, we imagine 

that the users can obtain perfect estimates of the Base station 

to user fading gains 

for signal 

detection purpose. However, the corresponding CSIT, i.e., 

may be outdated/in accurate at the BS 

because of the mobility of the users or errors in uplink 

channel estimation. To capture this result, we model the 

multipath fading CSIT of the link between the base station 

and user k on subcarrier i as  

 

Where  - estimated CSIT vector and - CSIT error 

vector 

 And  are Gaussian random vectors and each 

one vector has self-governing and identically dispersed 

rudiments. As well, the elements of vectors and 

have zero means and normalized variances of 1,  

and , in that order. Assuming a minimum mean square 

error estimator, the CSIT error vector and the actual CSIT 

vector are jointly uncorrelated. 

4. RESOURCE ALLOCATIONS 

4.1 Instantaneous Channel Capacity and               

Outage Capacity 
In this section, we characterize the adopted system 

performance measure. The specified perfect CSI at the 

receiver, maximum channel capacity among the BS and user k 

on subcarrier i with subcarrier bandwidth W is known by 
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Where ji,k is the received signal-to-interference-plus-noise 

ratio at user k on subcarrier i. The beam forming vector 

adopted at the BS is chosen to be the eigenvector 

corresponding to the maximum Eigen value of , 

i.e, , which is known as maximum ratio 

broadcast. Note that zero-forcing beam forming is not 

deliberate in this paper because it requires the inversion of an 

matrix on each subcarrier for all user, 

which is computational select for , and K. 

In most existing resource allocation designs, the system 

performance is calculated in terms of ergodic capacity. This is 

a significant measure when the resource allocator has great 

CSIT or the channels are fast fading such that a arbitrarily 

small decoding error chance can be achieve as long as the 

channel error alteration code is enough. Up till now, when the 

resource share has faulty CSIT in slow fading, a small 

package outage occurs whenever the transmit data rate go 

beyond the immediate channel capacity despite the use of 

channel capacity achieving codes for error defense. In order to 

model the consequence of packet errors, we assume the 

outage capacity as performance measure. The typical 

weighted system outage capacity is defined as the total 

average number of bit/s effectively delivered to the K mobile 

users and is given by U(P;A;R; S) = 

 

Where P- power,  

antenna, 

                R- Data rate, 

S- sub carrier allocation  

The R i, k is the listed data rate for user k on subcarrier i is a 

positive stable provided by the upper layers, i allows the 

resource share to give dissimilar priorities to dissimilar users 

and to put in force convinced notions of equality. Then again, 

for scheming of an energy efficient resource share algorithm, 

the total power consumption has to be added in the 

optimization point function. Thus, we model the power 

dissipation, UTP in the system as the sum of two dynamic 

terms and one static term: 

 

Where PC is the constant circuit power use per antenna which 

includes the power dissipations in the transmit filter, 

frequency synthesizer, mixer, and digital-to-analog converter 

which is self-governing of the actual transmit power. In the 

considered system, we assume that there are maximum 

number antennas, Nmax, at the BS. However, we only 

activate some of them for the sake of energy 

efficientcommunication1. Note that the physical meaning of 

the term is that an antenna is activate 

and consumes power even it is used only by a amount of users 

on some of the subcarriers.½ ¸ 1 is a steady which accounts 

for the lack of skill of the power amplifier. For example, if ½ 

= 5, for every 10 Watts of radiate power in the RF, 50 Watts 

are enthused in the power amplifier and the power efficiency 

is 1½ = 15 = 20%. P0 is the basic power inspired at the BS 

self-governing of the number of transmits antennas. Hence, 

the energy competence of the careful system is defined as the 

total usual number of bit/Joule effectively delivered to the 

users which is given by  

 

4.2 Optimization Problem Formulation 
 The optimal power allocation policy, P*, antenna allocation 

policy, A*, data rate adaption policy, R*, and subcarrier share 

policy, S*, can be obtained by solving 

 

 

 

 

Where Z+ denotes the set of positive integers. C1 specifies the 

minimum system data rate requirement r. C2 is a transmit 

power constraint for the BS in the downlink. The value of PT 

in C2 puts a limit on the amount of out-of-cell interference in 

the downlink. C3 specifies the channel outage probability 

requirement £. Note that the number of active antennas is an 

optimization variable in this paper. Hence, the imperfect CSI 

of the multipath fading can only be acquired by the BS after 

the resource allocator has decided on the number of active 

antennas. Therefore, the outage probability conditional on the 

multipath fading, which is commonly used in the literature, 

cannot be adopted in C3. C5 is a combinatorial constraint on 

the subcarrier assignment. Furthermore, C5 implicitly imposes 

a fairness constraint, since no user can dominate the subcarrier 

reuse process. In other words, selected users are not allowed 

to multiplex different messages on the same subcarrier, since 

a sophisticated receiver would be required at each user, such 

as a successive interference cancellation receiver, to recover 

more than one message. Besides, the weaker users have a 

higher chance of being selected for reusing a subcarrier. C4 is 

the boundary constraint for the power allocation variables. C6 

is the combinatorial constraint on the number of antennas. 

5. SOLUTION OF THE OPTIMIZATION 

PROBLEM 
The objective function is a non-convex function. In general, a 

brute force approach is required for obtaining a global optimal 

solution. However, such a method has exponential complexity 

with respect to the number of subcarriers which is 

computationally infeasible even for small size systems. In 
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order to obtain an efficient resource allocation algorithm, we 

introduce the following transformation. 

5.1 Problem Transformation 
The fractional objective function can be classified as a 

nonlinear fractional program. For the sake of notational 

simplicity, we define F as the set of feasible solutions of the 

optimization problem. Without loss of generality, we define 

the maximum energy efficiency q¤ of the considered system 

as 

 

5.2 Iterative Algorithm for Energy    

Efficiency Maximization 
Here, we propose an iterative algorithm for resolving an 

equivalent meaning function. The proposed algorithm is 

summarized and the junction to the optimal energy efficiency 

is assured. Note that the algorithms converge to the most 

excellent result with a great linear convergence rate and please 

refer to for a detailed proof of the rate of convergence. In each 

iteration in the main loop, we resolve the following 

optimization problem for a given parameter q: 

 

In the following, we derive the solution of the main loop 

problem by dual decomposition.   

5.3 Solutions Of The Main Loop   Problem 
The transformed difficulty is a varied combinatorial and non-

convex optimization trouble. The combinatorial nature comes 

from the integer constraint for both subcarrier share and 

antenna portion as the non-convexity is due to the following 

properties: First, the multiuser intrusion owing to subcarrier 

reclaim appears in the denominator of the capacity equation 

which couples the power portion variables. Second, the outage 

probability obligation in C3 is neither curved in nor convex 

with respect to the optimization variables. Furthermore, the 

probability distribution of the SINR is coupled with the 

optimization variables which make the resource allocation 

algorithm design undetectable. In order to derive an efficient 

resource allocation algorithm, we introduce the following 

proposition by taking advantage of the large numbers of 

antennas. Proposition 1: For a given outage probability “in 

C3, the equivalent data rate which incorporates the outage 

prospect on subcarrier i for user k is given by  

 

Note that  and   which indicates the 

minimum number of antennas required for Proposition 1 to 

hold.  

6. SIMULATION RESULTS AND 

DISCUSSION 
In this part, we will present mathematical results to 

authenticate the proposed energy-efficient resource share 

algorithms. A single-cell network with a radius of 500 m is 

measured, where the base station is situated in center of the 

cell. We aspire to show the efficiency of our proposed 

algorithm and the EE tradeoffs. So, for ease, we only think a 

two-user situation, where two users are randomly situated in 

the cell. The numeral of subcarriers varies from 2 to 8 and the 

multipath fading channel gains between the base station and 

users are with self-governing and identically distributed 

Rayleigh fading. Each user has the same maximum transmit 

power, Pmax, and the same data rate requirement, R min. The 

RF circuit power consumption, Pe, is set to 0.42W while we 

vary the fixed power use from1 W to 3 W to address the crash 

of fixed power use to the EE performance in dissimilar 

algorithms. Without loss of generalization, we assume that the 

power amplifier efficiency is 50% for each user. 

                        Table 1. Simulation Parameters 

 

 

Figure 1. Weighted-sum EE versus P_x. N = 4, W = 1:25 

MHz 

 

Figure 2. Weighted-sum EE versus subcarrier bandwidth. 

Pmax = 26:7 dBm,Pfix = 2:13 W. 
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Figure 3. The minimum EE versus number of subcarriers. 

Pmax = 26:7 dBm,Pfix = 2:13 W, W = 1:25 MHz 

 

Figure 4. The minimum EE versus P_x. N = 4, Pmax = 

26:7 dBm,W = 1:25 MHz 

 

Figure 5. EE comparison of different algorithms. N = 4,   

Pmax = 26:7 dBm, W = 1:25 MHz 

 

Figure 6. :  EE optimization vs. rate optimization.                

The weighted-sum approach. N = 4, Pmax = 26:7 dBm,        

W = 1:25 MHz 

Figure 7. EE optimization vs. rate optimization.                  

The max-min approach. N = 4, Pmax = 26:7 dBm, W = 

1:25 MHz 

7. CONCLUSION 

In this paper, we formulated energy-efficient resource 

allocation for OFDMA systems from the view of multi-

objective optimization. Different from existing works, we aim 

at maximizing the EE for individual user by joint subcarrier 

and power allocation. Therefore, a multi-objective 

optimization problem has been formulated. An efficient 

iterative resource allocation algorithm with closed-form 

power adaption, antenna allocation, data rate adaption, and 

subcarrier allocation was derived for maximization of the 

number of received bit-per-Joule at the users. Simulation 

results did not only show that the proposed algorithm 

converges to the optimal solution within a small number of 

iterations, but established also the trade-off among energy 

efficiency and the number of transmit antennas: The use of a 

large number of antennas is always beneficial for the system 

outage capacity, even if the CSIT is imperfect. However, an 

exceedingly large number of antennas may not be a cost 

effective solution for improving the system performance, not 

based on energy efficiency. 
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